BCR algorithm and the T (b) theorem

نویسنده

  • Xiang Yang
چکیده

We show using the Beylkin-Coifman-Rokhlin algorithm in the Haar basis that any singular integral operator can be written as the sum of a bounded operator on L, 1 < p < ∞, and of a perfect dyadic singular integral operator. This allows to deduce a local T (b) theorem for singular integral operators from the one for perfect dyadic singular integral operators obtained by Hofmann, Muscalu, Tao, Thiele and the first author.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the Descent Property Theorem for the Hybrid Conjugate Gradient Algorithm CCOMB Proposed by Andrei

In [1] (Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization J. Optimization. Theory Appl. 141 (2009) 249 - 264), an efficient hybrid conjugate gradient algorithm, the CCOMB algorithm is proposed for solving unconstrained optimization problems. However, the proof of Theorem 2.1 in [1] is incorrect due to an erroneous inequality which used to indicate the descent property for the s...

متن کامل

A Common Fixed Point Theorem Using an Iterative Method

Let $ H$ be a Hilbert space and $C$ be a closed, convex and nonempty subset of $H$. Let $T:C rightarrow H$ be a non-self and non-expansive mapping. V. Colao and G. Marino with particular choice of the sequence  ${alpha_{n}}$ in Krasonselskii-Mann algorithm, ${x}_{n+1}={alpha}_{n}{x}_{n}+(1-{alpha}_{n})T({x}_{n}),$ proved both weak and strong converging results. In this paper, we generalize thei...

متن کامل

Fixed point theorem for non-self mappings and its applications in the modular ‎space

‎In this paper, based on [A. Razani, V. Rako$check{c}$evi$acute{c}$ and Z. Goodarzi, Nonself mappings in modular spaces and common fixed point theorems, Cent. Eur. J. Math. 2 (2010) 357-366.] a fixed point theorem for non-self contraction mapping $T$ in the modular space $X_rho$ is presented. Moreover, we study a new version of Krasnoseleskii's fixed point theorem for $S+T$, where $T$ is a cont...

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007